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Abstract

This study offers a framework for affordable STEM human resource 
formation using the community college sector as an entry point. Using 
predictive analytics and counterfactual evidence, we identify first-year 
community college students with high probabilities of four-year graduation 
in STEM disciplines with two most recent national samples: National 
Educational Longitudinal Study (NELS), 1988–2000, and Education 
Longitudinal Study (ELS), 2002–2012. Findings revealed that while 
the prevalence of these counterfactual community college students 
doubled in the most recent sample (11.7% in NELS versus 22.7% in ELS), 
they also became less likely to attain a four-year degree in STEM. In the 
NELS sample the probability of a BS in STEM degree attainment was 
18.2% whereas in the ELS sample it became 14%. At the cohort level, we 
observed a 70% decrease in the likelihood of counterfactual students 
attaining a four-year STEM degree without intervention. Socioeconomic 
status as the single most important driver of STEM attainment individual 
attributes were less predictive in the ELS sample. This study lays the 
groundwork for future interventions to improve success rates among 
community college students in STEM fields, emphasizing the importance 
of early identification and tailored support. Future studies can build upon 
our counterfactual framework to identify these students and enhance 
prospects for STEM degree attainment.
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Introduction
In their very inception in the early 1900s, public two-year 
community colleges were originally conceived to offer 
programs extending from high schools as the 13th and 
14th years of formal education (Clark, 1960; Cohen, 1987; 
Garrison, 1975; Helland, 1987; Vaughan, 1995). However, 
by the 1920s, community college course offerings began 
mirroring the first two years of coursework available at 
four-year institutions (Clark, 1960; Spindt, 1957), allowing 
students to pursue education that enabled them to transfer 
to a four-year institution starting in their “junior” year of 
college (Spindt, 1957).
Fast forward more than a century, community colleges—
or public two-year colleges (used interchangeably 
henceforth)—have evolved to encompass two defining roles. 
First, they serve as steppingstones to four-year degrees 
(González Canché, 2018). Secondly, they function as a vital 
and affordable entry point to higher education for minoritized, 
low-income, and first-generation-in-college students 
(González Canché, 2014, 2018, 2017b, 2020, 2022). The 
amalgamation of these roles means that, for at least the past 
three decades, the majority of these students have aimed to 
transfer to a four-year institution. Analyzing two nationally 
representative samples of students transitioning from high 
school to college (National Education Longitudinal Study of 
1988 and Education Longitudinal Study of 2002), González 
Canché (2020) found that in the 1990s and 2000s, 69% and 
71% of high school seniors, respectively, who began college 
in the community college sector, expected to attain at least 
a bachelor’s degree. Similarly, estimates of another recent 
nationally representative study on high school to college 
transitions (High School Longitudinal Study—HSLS, 2009–
ongoing) showed that, in the 2010s, 60% of community 
college entrants expected to attain at least a bachelor’s 
degree (authors’ estimates based on restricted-use HSLS 
data). These nationally representative estimates indicate 
that, across three decades, about two-thirds of community 
college students have expected to attain a four-year degree, 
thus validating their perceived role as gateways to higher 
levels of education.
However, despite these elevated expectations, empirical 
evidence consistently reveals that less than a third of 
community college students with aspirations for a four-year 
degree actually transfer to a four-year college, resulting in a 
“cohort bachelor’s completion rate”1 of 14.2% (Shapiro et al., 
2020). This persistent gap, referred to as the baccalaureate 
gap (Dougherty, 1992), has been substantiated across 
four decades of research, which indicates a consistent 
average reduction of 28.4% (standard deviation = 19.2%) 
in community college students’ probabilities of attaining 
a bachelor’s degree compared with their four-year 
counterparts (González Canché, 2018; Figure 2  
https://cutt.ly/VQXGWf3).

Notably, when researchers focus on two-year entrants who 
transferred to a four-year institution (referred to as raising 
juniors), around 46% of these transfer students attain a four-
year degree within six years of their initial college enrollment 
(Shapiro et al., 2020). This figure is important because 
studies in this area have concluded that when community 
college students do transfer to a four-year institution, they 
are as likely to attain a four-year degree as their counterparts 
who started college in the four-year sector (Dietrich & 
Lichtenberger, 2015; Lichtenberger & Dietrich, 2017; 
Monaghan & Attewell, 2015).
Together, these findings carry significant implications. First, 
despite enrolling a financially constrained and minoritized 
student segment, these comparable success rates of 
transfers and four-year natives mean that the two-year 
path to a four-year degree is feasible for a subset of two-
year entrants. Second, when considering that at least about 
two-thirds of community college students aspire to transfer, 
but only a small portion of them achieve doing so, then we 
could conclude that if the transfer process is streamlined, we 
could potentially also increase the proportion of community 
college students attaining four-year degrees. Finally, if we 
consider that the 2022 national six-year completion rate 
among public and private not-for-profit four-year students is 
73.65% (National Student Clearinghouse, 2022),2 it could be 
argued that if we device a plan to identify two-year entrants 
with similar academic performance as their four-year 
counterparts, such two-year entrants should have about a 
75% chance of attaining a four-year degree as well.
Another noteworthy aspect of relying on the two-year path 
toward a four-year degree is its enhanced affordability. 
Studies on the financial impact of this path—particularly in 
terms of student loan debt reliance—consistently indicate 
a reduction of about 10 percentage points in total debt 
accumulation (González Canché, 2014, 2020; Hu, et al., 
2017). Despite longer enrollment times and heightened 
opportunity costs (i.e., loss of revenue associated with 
full-time enrollment), this path may still present a more 
affordable option for a subset of community college students 

1  Ratio of the number of community college entrants in year X who attained a 
four-year degree within six years divided by the total number of community 
college entrants in year X (Shapiro et al., 2020).

2   This graduation rate is 69% for public four-year colleges and 78.3% for private 
not-for-profit colleges. Our 73.65 percent estimate was calculated by adding 
these percentages and dividing them by 2.
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(González Canché, 2020). Together, these degree attainment 
and financial outcomes are appealing for they underscore the 
significance of studying innovative strategies to strengthen 
the two-year path to a four-year degree of minoritized, low-
income students, presenting meaningful implications for 
closing educational gaps (González Canché, 2017a, 2022; 
González Canché, et al., 2023).

Community college students and STEM 
degree attainment
So far, our discussion has centered on overall degree 
attainment, with no discussion of the possibility or feasibility 
of using the two- to four-year path toward a STEM degree. 
Given that “STEM workers with a bachelor’s degree or 
higher have a median salary that is 47% greater than that 
of non-STEM workers with a bachelor’s degree or higher” 
(National Science Board, 2021), if two-year students attain a 
four-year degree in STEM, this will result in significant social 
and economic upward mobility. This prospect is particularly 
pertinent for community college students from minoritized 
and low-income backgrounds. Accordingly, in the following 
paragraphs we delve into existing research on this two-year 
STEM topic.
Malcom and Feder (2016) edited a National Academies 
of Sciences, Engineering, Medicine report on the barriers 
and opportunities for two- and four-year STEM degrees. 
In their report they inquired about another type of STEM 
degree departure: STEM drop-out, which involves not 
completing a degree in STEM, either by moving to a non-
STEM degree or leaving before completing any degree. 
The report fundamentally sought to identify strategies to 
increase STEM degree completion while acknowledging 
that students’ pathways to a four-year STEM degree do not 
necessarily begin in a four-year institution. Investigating 
this less conventional, more indirect pathway, González 
Canché (2017b) identified that approximately 10% of STEM 
PhD holders in the National Science Foundation’s Survey of 
Doctorate Recipients (2021) reported having started college 
in the two-year sector. Similar to the preceding discussion 
on comparable success rates of transfers and four-year 
students, the presence of these “community college 
scientists” (a term that signals their initial college formation 
in the public two-year sector—González Canché, 2017b) also 
means that these two-to-four-year paths have translated 
into the attainment of the highest and most prestigious 
terminal degree in the United States (González Canché, 
2017b).
Although this line of study is scarce, authors (González 
Canché, 2017b; Malcom & Feder, 2016) have found that a 
subset of community college entrants not only successfully 
transferred to a four-year institution, but also graduated with 

a STEM degree. Revisiting the transfer-out estimates, let us 
note that about two-thirds of community college students 
with a four-year degree aspiration didn’t transfer to a four-
year institution (Shapiro, et al., 2020). Since this latter 
group represents the majority of community college entrants 
with four-year degree aspirations, in this study we pose this 
guiding question: Can we identify initial community college 
students with high probabilities of four-year graduation in 
STEM disciplines?
Note that this question is not restricted to transfer, but 
rather it goes to actual four-year degree graduation 
probabilities in STEM. Relatedly, this question is grounded 
in the assumption that there exists a subset of community 
college students with high probabilities of attaining a four-
year STEM degree. If this is true, so far, we have no idea of 
the prevalence of these cases with high success probabilities, 
and, consequently, we also don’t know the degree to which 
they’re realizing their potential for such a degree. As stated 
above, STEM degrees have significant salary-related payoffs 
at the individual level, which is important for social and 
economic mobility. Moreover, from a societal perspective, 
as “science and technology development tighten across the 
world, the production of STEM graduates is of increasing 
importance for any country aspiring to remain competitive 
in scientific production worldwide” (González Canché, 
2017b). From these individual and communal perspectives—
and underscoring the important goal of increasing STEM 
production—it’s worth assessing the extent to which the 
community college sector’s role in serving as a steppingstone 
to a STEM four-year degree may be strengthened. 
Accordingly, our study aims to develop a strategy to identify 
community college entrants with high propensities of 
completing a four-year degree in a STEM field or discipline.

Purpose and practical relevance
Community colleges serve as important and affordable entry 
points to higher education for minoritized, low-income, 
and first-generation students. Yet two-year students 
experience lower academic success rates than their four-year 
counterparts. This study aims to develop, operationalize, 
and test an identification framework to address three key 
objectives: (a) to illuminate the prevalence of community 
college students with high probabilities of attaining STEM 
four-year degrees using data from the two most recent 
national studies, Education Longitudinal Study (2002–2012) 
and the National Educational Longitudinal Study (1988–
2000), (b) to explore differences between observed and 
expected outcomes of these students, and (c) use machine 
learning to identify predictors of success.
This study introduces an identification framework that 
detects community college entrants with high probabilities of 
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attaining STEM four-year degrees, an approach that  
hasn’t been applied previously to this line of inquiry. By 
identifying community college entrants with high potential 
for STEM degree attainment, this framework facilitates the 
assessment of unrealized contributions from minoritized 
students in STEM fields, potentially justifying the urgency 
of developing targeted interventions building from this 
identification framework.

Research questions
With this discussion in mind, this study addresses the 
following research questions:
1. Can we develop an innovative method using 

counterfactual causality and predictive analytics to 
identify two-year entrants likely to attain a four-year 
STEM degree (referred as “counterfactual students”)?

2. How common are these counterfactual cases among 
recent nationally representative samples of high school 
graduates transitioning to college in the United States?

3. What is the distribution of four-year STEM degree 
attainment among two-year entrants, distinguishing 
between those identified as counterfactuals and non-
counterfactuals? How do these distributions change when 
considering less than four-year degrees in STEM by these 
comparison groups? How do these distributions vary 
across decades?

4. How do the observed outcomes of community college 
students differ from their expected probabilities of 
attaining a four-year degree in STEM, and attaining 
a less than four-year degree in STEM? How do these 
success rates differ between counterfactual and non-
counterfactual community college entrants?

5. What are the best predictors of four-year STEM degree 
attainment for counterfactual two-year students? 
How does predictive power change when excluding 
socioeconomic status to test for sensitivity3 of these 
results as well as excluding academic indicators used to 
identify counterfactual cases? Additionally, how do these 
results compare across decades?

How have matching methods been used 
in higher education research?
This section provides a methodologically focused literature 
review to elucidate the relevance of matching methods for 
our identification strategy. Emphasis is placed on comparing 
probabilistic matching with propensity score methods. 
Reynolds and DesJardins (2009) illustrated the efficacy 
of matching methods in addressing inferential challenges 
encountered in nonexperimental education data. Similar to 

this project, they examined the impact of attending a two-
year college on educational attainment. The authors argue 
that semi-parametric methods, like matching, offer greater 
flexibility and require fewer assumptions than ordinary least 
squares (OLS) regression, leading to more accurate or less 
biased estimates compared to ignoring potential systematic 
differences across comparison groups. In the context of 
our participants, ample research (González Canché, 2014; 
Melguizo et al., 2011; Reynolds & DesJardins, 2009) has 
shown that two- and four-year students have substantially 
different distributions in their observed characteristics. Thus, 
in the absence of a statistical correction, the results would 
not capture the impact of type of college attended, but the 
systematic disparities across participants, which incidentally 
played a role in their ultimate decisions to attach different 
college types.
To address the challenge that self-selection based on 
observables poses in this line of study, Reynolds and 
DesJardins (2009) matched students based on the 
likelihood of receiving treatment, known as the “propensity 
score,” determined through logistic regression. A propensity 
score, therefore, simplifies the matching problem to a 
single dimension while aiming to balance between observed 
covariates across treated and control groups (Rosenbaum 
& Rubin, 1983). However, the way such a single score is 
produced also speaks to the limitations of propensity score 
matching (PSM). Critiques include that PSM reduces 
multiple covariates into a single score, and that PSM can 
still be sensitive to the curse of dimensionality, especially 
when dealing with a large number of covariates. As the 
dimensionality increases, finding comparable matches 
becomes more difficult, potentially resulting in poor matches 
and biased estimates (Caliendo & Kopeinig, 2008).
Probabilistic matching, as an alternative to PSM, can 
mitigate some of the disadvantages associated with PSM. 
The probabilistic matching approach followed mathematical 
principles outlined by Felligi and Sunter in their 1969 paper, 
“A Theory of Record Linkage.” Record linkage is a data 
integration technique to identify and link related records 
across different datasets. The primary goal is to recognize 
and merge records that correspond to the “same entity,” 

3  Sensitivity will be tested to address the fifth research question by intentionally 
excluding socioeconomic status (and then excluding academic indicators) 
from the machine learning classification model in order to assess how 
remaining indicators may vary in their predictive power or relative influence 
in machine learning specifications—see generalized boosted models (GBM) in 
the methods section.
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even if these records have variations or errors in the data 
(i.e., spelling errors or similar human mistakes). This 
process involves comparing specific fields or attributes 
within records, such as names, addresses, and quantitative 
indicators and identifiers, to create a unified data set 
(Dusetzina et al., 2014). One application of record linkage 
can be found in Osborne and McLaurin’s (2006) study, 
which used probability matching and record linkage to 
estimate the proportion of former further education (FE) 
students (comparable to students from community colleges) 
transferred to Scottish higher education institutions (HEIs). 
With unadjusted data from the Scottish Further and Higher 
Education Funding Council (1994–1999) and Higher 
Education Statistics Agency (1999–2000), they identified 
comparable entries (first initial, second initial, date of birth, 
and education council ID) to ascertain whether individuals in 
four-year universities had a background in further education.
Probabilistic matching, a record linkage technique, is also 
generally more adept at handling high-dimensional data 
(Enamorado et al., 2019). It can manage many covariates 
without explicitly reducing them to a single dimension. 
Moreover, probabilistic matching can be more robust in 
dealing with missing data (Sayers et al., 2016) for records 
may also be linked based on their common missingness—an 
approach we implemented in this study.
Procedurally, probabilistic matching assesses the likelihood 
that two records match based on whether they “agree” or 
“disagree” with the specified identifiers. It is this probabilistic 
matching via record linkage that we consider essential to our 
counterfactual identification strategy. Probabilistic matching 
quantifies the uncertainty inherent in merging procedures 
(Enamorado et al., 2019); in our study, such uncertainty can 
be understood as the differences between an individual and 
his or her matched counterpart. We’ll explain further in the 
Methodology section.
An important concept in probabilistic matching is blocking. 
Blocking reduces the number of data pairs by focusing on 
specific agreement patterns and may be an integral aspect 
of the probabilistic matching theory (Felligi & Sunter, 
1969). Instead of comparing all possible pairs, which can 
be computationally intensive, blocking involves restricting 
comparisons to records with equal values for certain 
attributes—like attending the same schools or living in the 
same zip code tabulated areas—known as blocking fields 
(Sariyar & Borg, 2010). Enamorado et al. (2019) indicated 
that blocking is helpful in addressing the problem of a 
low degree of overlap. Although important, we refrained 
from using blocking because this would naturally limit 
our possibilities to finding counterfactuals across the full 
spectrum of community college entrants and bachelor’s 
degree holders in STEM. We are, instead, interested in 
identifying counterfactual cases regardless of whether they 
lived in the same state or attended the same high schools.

Methodology
The proposed identification strategy is grounded in the 
assumption that the detection of community college students 
with high probabilities of attaining a four-year STEM degree 
can be accomplished through pre-college data indicators. 
This identification strategy builds on the counterfactual 
(Lewis, 1974) and potential outcomes (Rubin, 2005) 
frameworks. Counterfactual identification involves detecting 
participants whose “worlds” closely resemble each other. In 
essence, two individuals are considered good counterfactuals 
when they share similarities in their living environments, 
households, monetary and nonmonetary support 
systems, and academic achievement. Identifying optimal 
counterfactuals allows for the comparison of potential and 
actual outcomes. The process begins with identifying (a) a 
donor pool of the successful cases of interest—defined in this 
project as four-year degree holders in a STEM discipline—
and (b) a pool of two-year students from which feasible 
counterfactuals will be identified (see Panels (a) and (b) in 
Figure 1).
Using these pools, the strategy identifies the best 
counterfactuals of successful cases among the set of two-
year students, considering the degree of resemblance in 
observable characteristics. This resemblance is quantified 
as a feasibility weight (Sariyar & Borg, 2010), measured on 
a scale from 0 to 1, where 1 indicates perfect counterfactual 
identification. As the donors’ and two-year students’ 
attributes depart from exact matches, the counterfactual 
probability approaches zero (see Dusetzina, et al., 2014; 
Sariyar & Borg, 2010). A representation of this process can 
be seen in the green column in Panel (d) of Figure 1. Each 
community college student will have many matches, each 
assigned a feasibility probability when there are successful 
cases in the donor pool (Panel (a) of Figure 1). Notably, 
these counterfactual probabilities don’t necessarily span 
the 0-to-1 range uniformly; some students may have the 
feasibility weights close to 0, signifying a lack of feasible 
counterfactuals, whereas others may approach 1 due to the 
abundance of feasible matches from the donor pool. In this 
project, the initial identification involves detecting students 
with at least one minimum feasibility weight of 0.75 and 
retaining only the maximum value. A feasibility of 0.75 
means that the community college student started college 
with a 75% chance of completing a four-year STEM degree. 
Pragmatically, this threshold matches the 2022 national 
six-year completion rate among public and private not-for-
profit four-year students reported by the National Student 
Clearinghouse (2022).
Let us note that without blocking, each community college 
student will have as many feasibility weights as donor units 
in the sample. From this perspective, an empirical challenge 
consisted of devising a plan to retain only the maximum 
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value after this 0.75 threshold was met. That is, assume a 
community college student is identified counterfactually with 
two four-year STEM graduates with feasibility values of 0.85 
and 0.92. After applying the identification function, only the 
0.92 weight will be retained because it is the maximum value.
As briefly discussed above, additional criteria such as 
blocking (Dusetzina et al., 2014; Sariyar & Borg, 2010) 
may be incorporated during feasibility weights detection. 
For example, matches may be constrained to happen only 
among low-income status and ethnicity, and then further 
refining the identification to retain only the maximum 
feasibility probability or weight after applying these blocking 
constraints. Although future studies may rely on these 
blocking mechanisms, we refrained from applying this 
procedure to expand the possibility of identifying as many 
two-year students with high probabilities of four-year degree 
attainment in STEM as possible.

Statistical description
The record linkage theory is a methodology to establish 
the likelihood of matching components across records 
by creating a random vector of log odds. This vector is 
constructed by assigning one score or one weight to each 
component based on the probability of a match with another 
component. The process involves calculating log odds ratios 
for each component weight, considering the conditional 
probabilities of a match (m) and nonmatch (u). The 
probabilities of the random vector γ = (γ1, …, γn) conditional 
on the match status Z are defined as

  uγ = P(γ|Z = 0)
mγ = P(γ|Z = 1)

where Z = 0 stands for nonmatch and Z = 1 stands for match. 
Specifically, the vector is formed by summing up the weights 
of all components, represented as:

w(γk) = w1 + w2 + ⋯ + wk

where wk is a vector of weights, and w1 represents the weight 
of component one (e.g., last name). Each component weight  
wk is calculated as a log odds ratio:

wk(γk) = log (                      ) = log m(γk) – log u(γk)

Here, m stands for the likelihood of a match, u represents 
the likelihood of a nonmatch, and γk denotes the value of 
the comparison components of variable k. These values 
are specific to each entry in the record and are influenced 
by the frequency of the entry and the degree of error in the 
field. Thus, these weights play a crucial role in distinguishing 
between matches and nonmatches in the context of record 
linkage.

When assessing the likelihood of a match between records, 
record linkage adjusts for common or certain rare entries 
in the dataset since some entries, e.g., last names, vary in 
frequency. For instance, a common last name like “Smith” 
is likely to be found in both records, so a match would have 
a lower weight compared to a less common surname like 
“Raab” (Osborne & McLaurin, 2006).
The formulas for calculating the relevant values of m and u  
depend on the match status such that for a match it is 

And for a nonmatch it is 
m = 2e + eT

Although we didn’t rely on names, when a last name was 
missing on either record, the record linkage algorithm is 
designed to apply

m = 2e0

u = 2e0

fj in all previous equations is the frequency of a particular 
entry, N is the total number of entries in the dataset. e is 
the probability of a name being misreported, and e0 is the 
probability that a record is missing. These probabilities are 
calculated separately for smaller populations. Additionally, 
eT is the probability of a name being reported differently in 
either dataset. However, due to challenges in distinguishing 
this term from e, it isn’t calculated separately.
Finally, note that the set of algorithms to be used in the 
counterfactual identification come from the R Project’s 
RecordLinkage package (2023), which were originally 
designed to detect errors among databases. The R Project 
algorithms offer a robust approach to identifying the “same” 
student across spreadsheets, but with inconsistencies in, 
for example, their names or dates of birth. Due to space 
limitations, see Sariyar and Borg (2010) for details on the 
packaged algorithms to be used. In this study, we extended 
the use of these machine learning and classification 
algorithms to the counterfactual and potential outcomes 
frameworks.
As Figure 1 indicates, instead of identifying errors in 
databases as originally designed (Dusetzina et al., 2014), 
the framework shown in that figure essentially: searched 
for participants who look the closest across two datasets 
(Panels (a) and (b) in Figure 1), evaluated all feasible 

P(γ|Z = 1)
P(γ|Z = 0)
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set of matches across the total number of indicators via 
RecordLinkage (Panel (c)), and extracted the most optimal 
solutions—those above the 0.75 threshold, as shown in Panel 
(d), also in Figure 1. Recall that the higher these feasibility 
weights are, the better the counterfactual identification is 
(see Dusetzina et al., 2014; Sariyar & Borg, 2010).

Data sources
The National Education Longitudinal Study (NELS, 
1988–2000) and the Educational Longitudinal Study 
(ELS, 2002–2012) configure the main source of data. Both 
samples are representative of the population of U.S. high 
school students transitioning to college and were measured 
exactly one decade apart, which enables us to both have a 
secondary and independent source to assess for robustness 
and sensitivity of our analyses and offers the possibility of 
reaching more nuanced understandings of these students. 
Although these datasets offer thousands of indicators (see 
this Table for an example of some indicators used in a recent 
study by González Canché, 2020), for our study we first 
selected academic indicators related to math and science 
(see Tables 4 and 5, Panels B), given their relevance for 
success in STEM (National Research Council, 2011), and 
then added individual attributes including gender, ethnicity, 
and an index of socioeconomic status (see Tables 4 and 5, 
Panels A). In both the NELS and ELS samples, this index was 
created as a function of parents’ (or guardians’) employment 
prestige, level of education, and salary. Also, in both samples 
these SES indexes were normalized to range to about -2 to 2, 
with negative values signaling socioeconomic hardship and 
positive values indicating socioeconomic prosperity.

Variable selection for probabilistic 
matching
Initially, we aimed to include both high school academic 
indicators and individual attributes as part of the 
counterfactual identification process. This initial decision 
was based on our goal of creating as many comparable 
matches as possible; however, we were failing to see what 
all previous literature on community college and four-
year students has pointed out, that these students are 
systematically different in both their academic indicators 
and their attributes (Doyle, 2009; González Canché, 2020; 
Melguizo, et al., 2009; Reynolds & DesJardins, 2009). 
Accordingly, trying to match in all of them would result in 
identifying community college students who mirror their 
four-year counterparts in academic and sociodemographic 
attributes. Consequently, when we applied these matching 
techniques using both academic and sociodemographic 
indicators, the probability weights identified fewer than 90 
community college cases in each sample. The reason for 

this lack of matches was that four-year students graduating 
from STEM tend to be White, Asian, male, and wealthier, 
compared to community college entrants. In other words, 
“forcing” the matching process to include sociodemographic 
indicators resulted in basically lack of matches for few 
students in the community college truly match four-year 
students socioeconomic and demographic indicators. This 
is why we decided to limit the matched to only their high 
school academic indicators, including cumulative grade 
point average (GPA), number of credits in math and science, 
and number of math and science courses their high schools 
require for them to graduate (Tables 4 and 5, Panels B for the 
NELS and ELS samples, respectively). This strategy resulted 
in more matches, who were counterfactually the same 
academically speaking but didn’t look the same in gender, 
race and socioeconomic standing. The results of these 
procedures can be seen in Figures 2 and 3, and Table 1, as 
discussed in our findings section.

Post-identification analyses
All two-year entrants who meet the feasibility weight 
threshold were assigned a value of 1 (i.e., counterfactually 
matched), and their nonmatched counterparts were assigned 
a value of 0 (i.e., nonmatched). Each two-year participant, 
regardless of matched status, also has an observed value 
(see Panel (d) in Figure 1). With this information we 
estimated the expected probability of a four-year degree 
attainment in STEM across matched and unmatched 
participants. These results can be observed in Table 2. 
Moreover, since community college students can, by design, 
attain less than four-year degrees, we also estimated their 
probabilities of attaining a less-than-four-year STEM degree, 
as can also be seen in Table 2.
Table 3 shows an index we’re calling realization rate. We 
created this realization rate index from two indicators: each 
student’s observed STEM outcome and feasibility weight. 
These two values were multiplied so that if a student 
attained a BS in STEM (i.e., an outcome with a value of 1) 
and had feasibility weight of 1, then this student would have 
a value of 1 in this index. If a student had a feasibility of 0.75 
and obtained a BS in STEM, this student would retain this 
feasibility weight of 0.75 in this index. This implies that, 
to the extent matched students are obtaining BS degrees 
in STEM, on average we should expect them all to have 
realization rate indexes over 0.75.
Note that we also computed this index for nonmatched 
students, who may or may not have attained a BS degree 
in STEM. In this case, we changed their matched indicator 
to 1 in order to avoid multiplying their observed outcomes 
by zero and thus not being able to compute their realization 
rate indexes. In this case, since nonmatched students had 
feasibility weights below 0.75, we observed realization 
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indexes lower than their matched counterparts. As shown 
in Table 3, to further compare these performances, we also 
took the difference of the average realization rate indexes by 
matched and nonmatched participants from their feasibility 
indexes. We did this to assess the degree loss rate. That is, 
imagine that among matched participants the realization 
rate is 0.30 on average, but their average feasibility weight is 
0.80. In this case, the gap between the feasibility weight (i.e., 
their expected probability of counterfactually having attained 
a four-year degree in STEM) and their cohort average BS 
attainment rate is 0.50 (or 0.80 – 0.30). This value may 
then be read as having decreased their mean probabilities 
of attaining a BS degree in STEM by 50 percentage points. 
In other words, we lost the possibility of increasing the 
production of STEM degrees among two-year entrants by 
50 percentage points, as we further elaborate in the findings 
section. A similar set of analyses will be computed for 
nonmatched participants.
Finally, we implemented generalized boosted models 
(GBM) via Gradient Boosting Machine (see Ridgeway, 
2024) to identify drivers of BS in STEM degree attainment 
among counterfactual community college students. 
Essentially, via boosting, GMB aims to minimize some loss or 
misclassification via negative gradient (or gradient descent) 
when the classification is less than optimal or positive 
gradient (or gradient ascent) if the classification is above the 
best loss fit (i.e., perfect classification).
An important conceptual characteristic of GBM with 
statistical implications is that GBM offers the best 
prediction (or prediction that minimizes loss or inaccuracy 
in predictions) based on the values of X (i.e., the variables 
and attributes of the units of analysis) for which we have 
observations (Ridgeway, 2024). This implies two things. One, 
we don’t know if our model is the best model because there 
may be many other important Xs that we don’t have access to 
in our datasets—hence preventing us from claiming causality. 
In this study these Xs are academic and nonacademic 
(i.e., sociodemographic indicators) attributes observed. 
The second implication is that we can explore how the 
combination of these indicators behaves with multiple GMB 
model specifications—i.e., adding or removing some Xs from 
the model. Specifically, in the full models shown in Figures 4 
and 5, we included all academic and nonacademic indicators, 
whereas in the subsequent two models in each figure we 
excluded SES and retained only gender and ethnicity as 
indicators of interest, respectively.
A concern related to the use of boosting is the possibility 
of overfitting, but in GBM this concern is minimized by 
imposing λ, a learning rate through shrinkage (Friedman, 
2001). Boosting learns from weak models until it reaches the 
optimal minimum loss rate through T number of iterations 
(Ridgeway, 2024) via cross-validation by selecting random 
subsamples without replacement of the training datasets. 

Note that training datasets consist of randomly taking 70% 
of the analytic samples in both NELS and ELS.
Once the cross-validation has gone over all T iterations, 
we are then able to identify the most important drivers for 
regression or classification. In our case, since the outcomes 
are four-year degree attainment in STEM, we relied on GBM 
models for classification. In GBM the influence of a variable 
Xj is measured by the empirical improvement (loss reduction) 
associated with splitting trees on specific values of Xj during 
the training iterations T (Ridgeway, 2024). The results of 
Xs relevance is shown in Figures 4 and 5, wherein in our 
findings section we will further explore the meaning of these 
indicators with respect to their impact on the outcome of 
interest—i.e., four-year STEM degree attainment.
Finally, an important attribute of GBM is its capability to 
account for survey weights during the classification or 
regression processes. This is important for our efforts to offer 
estimates that are nationally representative of the United 
States across two different decades.

Findings
For clarity, we have organized this section by research 
question.
Can we develop an innovative method using counterfactual 
causality and predictive analytics to identify two-year 
entrants highly likely to attain a four-year STEM degree?
Our identification strategy successfully identified community 
college students with a high probability of attaining a STEM 
degree across different analytic samples. Let us note that 
these probabilities were obtained from counterfactually 
matching community college students with individuals who 
pursued and obtained a bachelor’s degree in STEM fields 
after starting in four-year institutions.
Figures 2 and 3 show the counterfactual probabilities 
distributions of two-year entrants in the NELS and ELS 
samples. Our identification threshold was 0.75, highlighted 
by the vertical lines. Students positioned to the right of 
these vertical lines were classified as counterfactual cases. 
Notably, students to the left of this threshold serve as 
comparison units. Additionally, we observed a concentration 
of cases around the 0.675 mark, indicating a density and 
frequency bump near our threshold in both samples. This 
observation raises noteworthy issues, because students 
closer to the threshold are likely to exhibit more similar 
outcomes than those further away. Consequently, our 
results may be conservative. Future studies could explore 
alternative techniques, such as quantile regressions, 
to better understand the impact of deviations from our 
selected threshold on the identification of counterfactual 
probabilities.
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After operationalization, what is the prevalence of 
these counterfactual cases in the two latest nationally 
representative samples of U.S. students transitioning from 
high school to college?
Table 1 provides additional context to Figures 2 and 3. This 
table also answers the second question of this study, aiding 
in the examination of the prevalence of these counterfactual 
cases across the two analytic samples. This table contains 
two panels, each corresponding to one of the analytic 
samples. Within each panel, we present the distribution 
of students identified as counterfactuals alongside the 
distribution of their nonmatched community college peers.
A comparative analysis spanning across decades reveals an 
appreciable increase in the number of students in the ELS 
sample, the most recent cohort, by approximately 100,000. 
Notably, the matched sample of this latter cohort featured 
over 100,000 more cases. Thus, both samples exhibited 
fewer than 777,000 nonmatched cases. However, in the 
NELS sample, about 102,000 students were matched, 
whereas this number increased to 229,000 cases in the 
ELS sample. In terms of percentages, the NELS sample 
indicated that about 12% of students were identified as 
counterfactuals, while this proportion surged to 23.7% in the 
ELS sample.
These results suggest that our identification strategy 
consistently pinpointed more than 100,000 students with a 
high likelihood of attaining a bachelor’s degree in STEM, with 
this representation doubling in the following dataset.
What is the distribution of observed four-year STEM 
degree attainment among identified counterfactual and 
non-counterfactual two-year entrants? Also, how do 
distributions for less than four-year STEM degrees differ 
in these groups, considering variations across decades?
Table 2 present a descriptive correlational analysis of how 
our counterfactual identification strategy correlates with the 
probabilities of attaining a four-year degree in STEM. Each 
table consists of a two-by-two cross tabulation, delineating 
two groups and two outcomes.
In the first group, we examine non-counterfactual cases and 
their outcomes regarding four-year STEM degree attainment. 
Conversely, in the second group, we present these outcomes 
distributed among matched students. The associated 
probability value reflects a chi-squared distribution test that 
assesses the presence of an association between the two 
variables.
Across both samples, consistent results emerge regarding 
four-year STEM degree attainment among nonmatched 
students. Nonmatched community college students 
exhibit a likelihood of less than 6.4% in attaining a four-
year degree, with a downward trend evident in the most 
recent sample, where the probability drops to 5.4%. On the 
contrary, matched students demonstrated substantially 

higher probabilities of obtaining a four-year degree than 
their unmatched counterparts. In the NELS sample, these 
probabilities reached 18.4%, albeit decreasing to 14% in 
the more recent ELS sample. This indicates that, using the 
same analytic techniques and identification procedures, 
counterfactual community college students are experiencing 
lower success rates than their matched peers from a decade 
earlier.
What is the distribution of these estimates when 
considering less-than-four-year degrees in STEM by these 
comparison groups?
The rows labeled “STEM degree, Less than BS” in Table 2 
address this question. It is evident that, across decades, 
about 14% of community college students who weren’t 
matched attained a degree in STEM. In the case of matched 
students who didn’t attain a BS degree in STEM, there is a 
notable three-percentage-point decrease in the attainment 
of less than a BS degree in STEM in the most recent sample. 
Specifically, in the NELS sample, 20% of counterfactually 
matched community college students attained a less-than-
four-year STEM degree. In the ELS sample this percentage 
was 17.3 percent.
Although our analysis doesn’t directly measure the impact 
of our identification strategy on increasing less-than-four-
year BS degrees in STEM, our matched students tended 
to outperform their nonmatched peers in this outcome. 
However, this advantage shrank across decades, indicating 
potential shifts or changes in educational pathways and 
attainment patterns.
How do the observed outcomes of community college 
students differ from their expected probabilities in 
achieving both four-year and less-than-four-year STEM 
degrees? Additionally, what are the variations in success 
rates between counterfactual and non-counterfactual 
community college entrants?
To address these questions, we present the realization 
rates discussed in the methods section. The results of 
these procedures are shown in Table 3. Panel A shows the 
realization rate of NELS students by matched status. Overall, 
we see a significantly higher realization rate for matched 
students, averaging at 0.153 (standard deviation = 0.32), 
compared with a mere 0.035 (standard deviation = 0.14) 
among nonmatched students. Additionally, Table 3 shows 
the probability or feasibility weight, with mean values of 
0.836 (standard deviation = 0.08) for matched students and 
0.501 (standard deviation = 0.20) for nonmatched students. 
These latter values represent the “ideal” scenario in which all 
students attained a four-year degree in STEM.
From this perspective, then, the gap between matched 
students’ feasibility index and realization rate may be read 
as a form of STEM loss rate in this sample. Specifically, by 
subtracting the average feasibility weight from the realization 
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rate (0.8358 − 0.1526 = 0.6832), we estimate a gap of 68 
percentage points in STEM attainment probability. This 
signifies that, without intervention, matched students in 
the NELS sample experienced a substantial decrease in 
the probability of attaining a BS in STEM. The loss gap for 
nonmatched students was comparatively lower, measuring 
at 0.466 (or 0.5013–0.0353). Although this latter gap 
was expected due to the inherently lower probabilities 
of nonmatched students, as indicated by their feasibility 
indexes (up to 0.749), their attainment rates were also lower, 
as seen in Table 2.
Similar patterns persist for nonmatched students in the 
ELS sample, a decade later. Here, the mean realization 
rate was 0.037 (standard deviation = 0.14) compared to 
0.0353 in the NELS sample. For matched participants, the 
mean realization rate was lower, decreasing from 0.1526 
(standard deviation = 0.32) to 0.1169 (standard deviation 
= 0.29). These worsening cases across all analyses 
corroborates the widening loss rate of BS STEM completion 
among community college students identified as four-year 
counterfactuals in recent samples. In this case, the gap for 
these counterfactually matched students widened to 0.720 
(or 0.8366−0.1169).
How do the previous estimates change when measuring 
the attainment of a less-than-four-year degree in STEM?
In the case of less than a four-year BS in STEM degree, we 
continue to see a deterioration in outcomes in the most 
recent sample. Specifically, in the NELS case, counterfactual 
community college students had a realization rate of 0.172 
(standard deviation = 0.36), whereas a decade later, this rate 
decreased to 0.125 (standard deviation = 0.30). Contrarily, 
the realization rate of nonmatched students remained 
consistent across decades, hovering around a mean value of 
about 0.08 (standard deviation ≈ 0.20).
What are the best predictors of success for counterfactual 
two-year students while considering BS and less than BS 
degrees in STEM?
To begin addressing this question, we’ll delve into Tables 
4 and 5, which delineate the levels of each indicator 
disaggregated by counterfactually matched status.
In the NELS sample (see Table 4), we see a relatively 
balanced gender representation, with women constituting 
about 50% of nonmatched students. However, among 
matched community college entrants, women were slightly 
overrepresented, comprising about six percentage points 
more than their male counterparts. Regarding ethnicity, 
white students dominate both nonmatched and matched 
groups, comprising about 70% and 82%, respectively. 
Asian representation remains low in both categories, not 
surpassing 4.3%—this may indicate a tendency for Asian 
students in the NELS sample to bypass starting college 

in the public two-year sector. Similarly, Black students 
weren’t prevalent in the matched sample, representing only 
3.7%. Hispanic students, however, constitute the second-
highest represented group among matched students 
(8.6%). Hispanic students were also the second highest 
represented group among nonmatched students with 14%, 
potentially indicative of their propensity to start college in the 
community college sector.
In Table 5, which contains the attributes of ELS students, 
women became even more represented in the matched 
sample, comprising about 60%. The representation of 
white students decreased in the matched sample from 
82% to 71.3% over the decade. Asian students remain a 
small portion of the total (3.6%). Notably, both black and 
Hispanic student representation almost doubles in the 
matched sample, reaching 7.6% and 15.6%, respectively. 
Although the ELS sample provides more detailed accounts of 
ethnicity, including multi-race and Native and Alaska Native, 
their representation in the sample remained low. With this 
contextualization of our participants’ attributes in mind, 
we proceed to identify the most important predictors of BS 
degree attainment in STEM.
To formally address these questions, we employ six GBM 
specifications. These models enable the identification of 
the most important and stable drivers for STEM four-year 
degree completion. As outlined in the methods section, we 
first trained the data using 70% of each unit in each sample 
and then tested the GBM performance with the remaining 
30% in each sample. The results are shown in Figures 4 and 
5. Each figure contains three GBM specifications. The first 
specification, termed the full model, contains all attributes 
discussed in Tables 4 and 5, in addition to academic 
achievement used for generating probabilistic weights 
or feasibility index as well as the socioeconomic (SES) 
index provided by NELS and ELS. The second specification 
excluded SES from these models, The third specification only 
includes the attributes contained in Tables 4 and 5.
Figure 4 corresponds to the NELS sample. In the full 
GBM, socioeconomic status (SES) emerges as the most 
influential factor for BS attainment in STEM, followed by 
GPA. Subsequently, the number of courses required in 
science during high school, along with the number of units in 
math and science attained during high school are identified 
as the third most important drivers. Among nonacademic 
attributes, Asian ethnicity is the first to surface, followed 
by gender (woman), and Hispanic ethnicity. When SES is 
omitted from the model, GPA takes precedence as the most 
critical predictor, followed by the number of high school math 
courses, then by the number of science requirements, and 
finally by the number of science units completed. Among 
nonacademic indicators, gender (woman) surpasses Asian 
ethnicity in importance.
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In the final GBM, which excluded all academic indicators, 
Hispanic ethnicity was the most important driver, followed 
by gender (woman). It’s worth noting that Hispanic students 
exhibited about 15.15 percentage points higher probabilities 
of attaining a STEM BS degree compared to non-Hispanics. 
Additionally, women demonstrate probabilities of attaining a 
BS in STEM approximately 6.3% higher than men.
The ELS sample (see Figure 5) presented some similarities 
and differences. When socioeconomic status was included 
in the full model, it remained the most important driver, 
followed by GPA. These findings mirrored the NELS GBM 
results. Similarly, when socioeconomic status was excluded, 
GPA became the most predominant driver.
In the ELS sample, the single most consistent 
nonacademically related indicator was gender (woman), 
and when only students’ demographics were considered in 
the GBMs, women and Hispanic ethnicity were the top two 
drivers. Notably, despite the relevance of these indicators, our 
correlational analyses indicated that Hispanic students were 
actually five percentage points less likely to attain a BS in 
STEM than non-Hispanic students. Similarly, women were 1.3 
percentage points less likely to attain this degree than men. 
These results underscore the limited precision and strength 
of association between these demographic indicators and 
the outcome, despite their apparent importance in reducing 
prediction error during the training process.
In summary, these results indicate that in the most recent 
sample, demographic attributes have become less important 
as drivers of academic success compared to the previous 
sample.

Limitations
Despite the insights provided by this study, several 
limitations should be acknowledged. First, the study 
focused primarily on demographic and academic predictors 
of success, overlooking other potential factors, such as 
social support networks, motivation and career aspirations. 
Additionally, to our knowledge, this is the first study that 
employs probabilistic matching to identify counterfactual 
cases. Research on how or the degree to which omitted 
variable bias may impact our results remains to be 
determined. Moreover, as stated above, our cut off point 
of 75% may be expanded to use other regression methods 
like regression discontinuity or quantile regression to offer 
alternative modeling approaches to estimate the impact of 
our counterfactual identification. Finally, qualitative research 
methods could provide deeper insights into the experiences 
and perspectives of counterfactually identified community 
college students in STEM education.

Discussion
Community colleges play a crucial role in higher education, 
serving as accessible pathways for many students seeking to 
pursue degrees in STEM fields. However, achieving success in 
STEM programs for students starting at community colleges 
remains a complex and multifaceted endeavor, influenced by 
factors ranging from academic preparation to demographic 
characteristics. Our research findings should serve as a basis 
for data-driven decision-making, prompting tailored support 
systems that address the unique needs of community college 
students aspiring to transfer to four-year STEM programs.
Our analyses highlight the influence of both demographic 
and academic factors on the success of community college 
students in STEM education. Gender and ethnicity emerged 
as significant predictors, with female students consistently 
driving success across various samples, highlighting the need 
to address gender disparities in STEM fields. Similarly, while 
Hispanic ethnicity showed higher probabilities of attaining 
a STEM BS degree in some analyses, correlational findings 
revealed lower actual attainment rates. This indicates 
the complexity of demographic influences on academic 
outcomes.
Socioeconomic status emerged as a critical predictor in 
the full GBM specification, underscoring the impact of 
socioeconomic factors on educational outcomes. However, 
when socioeconomic was excluded from the model, GPA 
emerged as the most influential predictor, suggesting 
that academic achievement mitigated the effects of 
socioeconomic disparities—which corroborates the relevance 
of providing low income students with quality education 
opportunities. Academic achievement, as measured by 
GPA and high school coursework, also played a pivotal role 
in predicting success in STEM education. Our analysis 
demonstrated that GPA was consistently identified as a 
significant predictor across different models, emphasizing 
the importance of academic performance in determining 
outcomes. Additionally, the number of science courses 
required during high school and the number of units in 
math and science completed were also significant factors 
influencing success in STEM programs. These findings 
underscore the importance of supporting students from 
diverse socioeconomic backgrounds and providing resources 
to ensure equitable access to educational opportunities.
The findings of this study have important implications 
for practice and policy in STEM education. Although our 
identification framework effectively identifies cases with 
elevated probabilities of attaining BS degrees in STEM, we 
have noted a troubling decline in the likelihood of these 
students obtaining their four-year degrees in STEM. The 
disparity between the anticipated likelihood of attaining 
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a STEM degree and the actual outcomes underscore a 
critical issue in the American higher education system. 
Community college students harboring the potential to excel 
in STEM fields may encounter formidable barriers due to the 
absence of adequate resources, support and policies. This 
not only results in a palpable loss of human capital but also 
diminishes the diversity within the STEM workforce. The 
repercussions extend to the career and financial well-being of 
these students, as delays in education completion can hinder 
their professional trajectory and earning potential. Based 
on our results, interventions and programs that support 
community colleges and their STEM programs may reduce 
educational disparities.

Conclusions
The focus of our study on four-year STEM degrees marks 
an important departure from existing literature on the 
baccalaureate gap and transfer effects. Our goal is to provide 
insights into opportunities that reduce social, academic, 
and economic disparities by identifying, as early as possible, 
minoritized two-year students with high probabilities of a 
STEM four-year degree attainment.
In conclusion, our study offers a counterfactual framework 
for affordable human-resource-formation in STEM, using the 
community college sector as an effective entry point. While 

our identification framework successfully identifies cases 
with higher probabilities of attaining BS degrees in STEM, 
we have observed a concerning decrease in the likelihood of 
these students attaining their four-year degrees in STEM. 
This reduction highlights the urgency to design efficient and 
effective plans of action to reduce failure rates. Although we 
show that our identification was successful in identifying 
cases with higher probabilities to attain BS in STEM, we also 
found a decrease of almost 70 percentage points in these 
students’ prospects of attaining four-year degrees in STEM. 
This loss potentially represents a foregone opportunity to 
improve the mobility prospects of these students based on 
the additional wage premium that would be earned with 
further education.
As highlighted in our literature review, transitioning from a 
community college to a four-year degree not only offers a 
more affordable route compared to the traditional four-year 
path (González Canché, 2014, 2022) but also may hold both 
greater significance for upward mobility, particularly for 
the typically minoritized and economically disadvantaged 
students who are more prevalent in this sector than the four-
year college sector overall. The results in this point suggest 
education disparities may be reduced if the community 
college system is better leveraged as a source of four-year 
STEM degrees. 



COUNTERFACTUAL PREDICTIVE ANALYTICS FOR ENHANCING STEM STUDENT SUCCESS 13

References
Clark, B. R. (1960). The open door college: A case study. McGraw-Hill.
Cohen, A. M. (1987). Facilitating degree achievement by minorities: The community college environment.
Dietrich, C. C., & Lichtenberger, E. J. (2015). Using propensity score matching to test the community college penalty 

assumption. The Review of Higher Education, 38(2), 193–219.
Dougherty, K. J. (1992). Community colleges and baccalaureate attainment. The Journal of Higher Education, 63, 188–214. 

doi:10.2307/1982159.
Doyle, W. R. (2009). The effect of community college enrollment on bachelor’s degree completion. Economics of Education 

Review, 28(2), 199–206.
Dusetzina S., Tyree S., & Meyer, A. M. (2014). Linking data for health services research: A framework and instructional guide. 

Agency for Healthcare Research and Quality (US). Available from: https://www.ncbi.nlm.nih.gov/books/NBK253312/.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5):1189–1232.
Garrison, R. H. (1975). Community colleges: The literature of the two-year college. Change: The Magazine of Higher Learning, 

7(3), 58–60.
González Canché, M. S. (2014). Is the community college a less expensive path toward a bachelor’s degree? Public 2- and 

4-year colleges’ impact on loan debt. The Journal of Higher Education, 85, 723–759. doi:10.1353/jhe.2014.0026.
González Canché, M. S. (2017a). Financial benefits of rapid student loan repayment: An analytic framework employing two 

decades of data. The ANNALS of the American Academy of Political and Social Science, 671(1), 154–182. https://journals.
sagepub.com/doi/full/10.1177/0002716217701700.

González Canché, M. S. (2017b). Community college scientists and salary gap: Navigating socioeconomic and academic 
stratification in the U.S. higher education system. Journal of Higher Education, 88(1), 1–32. https://www.tandfonline.com/
doi/full/10.1080/00221546.2016.1243933.

González Canché, M. S. (2018). Reassessing the two-year sector’s role in the amelioration of a persistent socioeconomic 
gap: A proposed analytical framework for the study of community college effects in the big and geocoded data and quasi-
experimental era. In M. B. Paulsen (Ed.), Higher education: Handbook of theory and research. Springer. https://www.springer.
com/gp/book/9783319268286.

González Canché, M. S. (2020). Community college students who attained a 4-year degree accrued lower student loan debt 
than 4-year entrants over 2 decades: Is a 10 percent debt accumulation reduction worth the added “risk”? If so, for whom? 
Research in Higher Education. https://doi.org/10.1007/s11162-019-09565-9.

González Canché, M. S. (2022). Post-purchase Federal Financial Aid: How (in) Effective is the IRS’s Student Loan Interest 
Deduction (SLID) in Reaching Lower-Income Taxpayers and Students? Research in Higher Education, 63(6), 933.

González Canché, M. S., Lee, J. C., Harding, J. L., Turk, J. M., Bae, J. Y., & Zhang, C. (2023). Post-Baccalaureate Federal Loans 
De-Subsidization: Impacts on Compositional Attributes, Extensive and Intensive Borrowing Margins, and Anticipatory 
Effects. The Journal of Higher Education, 1–38.

Helland, P. C. (1987). Establishment of public junior and community colleges in Minnesota, 1914-1983. Minnesota Community 
College System.

Hu, X., Ortagus, J. C., & Kramer, D. A. (2017). The community college pathway: An analysis of the costs associated with enrolling 
initially at a community college before transferring to a 4-year institution. Higher Education Policy, 1–22.

Lewis, D. (1974). Causation. The Journal of Philosophy, 70(17), 556–567.
Lichtenberger, E., & Dietrich, C. (2017). The community college penalty? examining the Bachelor’s completion rates of 

community college transfer students as a function of time. Community College Review, 45(1), 3–32.
Malcom, S. & Feder, M. (2016). Barriers and opportunities for 2-year and 4-year STEM degrees: Systemic change to support 

students’ diverse pathways. National Academies of Sciences, Engineering, and Medicine. https://www.nap.edu/read/21739.
Melguizo, T., Kienzl, G. S., & Alfonso, M. (2011). Comparing the educational attainment of community college transfer students 

and four-year college rising juniors using propensity score matching methods. The Journal of Higher Education, 82(3), 
265–291.



COUNTERFACTUAL PREDICTIVE ANALYTICS FOR ENHANCING STEM STUDENT SUCCESS 14

Monaghan, D. B., & Attewell, P. (2015). The community college route to the bachelor’s degree. Educational Evaluation and Policy 
Analysis, 37(1), 70–91.

National Research Council. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, 
engineering, and mathematics. National Academies Press.

National Student Clearinghouse (February 2022). National Six-Year Completion Rate Reaches 62.2%. National Student 
Clearinghouse. Available from https://www.studentclearinghouse.org/national-six-year-completion-rate-reaches-62-2/.

National Science Board. (2021). The STEM Labor Force of Today: Scientists, Engineers, and Skilled Technical Workers. National 
Science Board. Available from https://ncses.nsf.gov/pubs/nsb20212/figure/LBR-12.

National Science Foundation. (2021). Survey of Doctorate Recipients (SDR). Available from https://ncses.nsf.gov/surveys/
doctorate-recipients/2021.

Ridgeway, G. (2024). Generalized Boosted Models: A guide to the GBM package. Update 2024. Available from https://cran.r-
project.org/web/packages/gbm/vignettes/gbm.pdf.

Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American 
Statistical Association, 100(469), 322–331.

Sariyar, M., & Borg, A. (2010). The RecordLinkage package: Detecting errors in data. The R Journal, 2(2), 61–67.
Shapiro, D., Dundar, A., Huie, F., Wakhungu, P. K., Yuan, X., Nathan, A., & Hwang, Y. (2020). Tracking transfer: Measures of 

effectiveness in helping community college students to complete bachelor’s degrees.(signature report no. 13, updated 2020). 
National Student Clearinghouse. https://nscresearchcenter.org/wp-content/uploads/Sig13Update2020_Fall2013Cohort.xlsx.

Spindt, H. A. (1957). Beginnings of the junior-college in California, 1907-1921. College and University, 33(1), 22–28.
Vaughan, G. B. (1995). The community college story: A tale of American innovation. American Association of Community 

Colleges, National Center for Higher Education.



COUNTERFACTUAL PREDICTIVE ANALYTICS FOR ENHANCING STEM STUDENT SUCCESS 15

Tables and figures

TABLE 1. HOW PREVALENT ARE THEY?

Matching Status Levels n %

NELS Nationally Representative Sample

Matched 0 768888 88.3

1 102306 11.7

all 871194 100.0

ELS Nationally Representative Sample

Matched 0 740066 76.3

1 229908 23.7

all 969974 100.0
Note: Unmatched is no counterfactual match (<.75). Matched is a counterfactual match (≥ .75).

TABLE 2. NATIONALLY REPRESENTATIVE SAMPLES: OUTCOME INDICATORS

Variable Levels Unmatched %0 Matched %1 nall %all

NELS Sample (1988 – 2000)

BS STEM degree No 720623 93.7 83655 81.8 804278 92.3

Yes 48265 6.3 18651 18.2 66916 7.7

p < 0.0001† all 768888 100.0 102306 100.0 871194 100.0

STEM degree, Less than BS No 577044 85.8 65092 80.0 642136 85.2

Yes 95319 14.2 16291 20.0 111610 14.8

p < 0.0001† all 672363 100.0 81383 100.0 753746 100.0

ELS Sample (2002 – 2012)

BS STEM degree No 699924 94.6 197660 86.0 897584 92.5

Yes 40142 5.4 32248 14.0 72390 7.5

p < 0.0001† all 740066 100.0 229908 100.0 969974 100.0

STEM degree, Less than BS No 601844 86.0 163528 82.7 765372 85.3

Yes 98080 14.0 34132 17.3 132212 14.7

p < 0.0001† all 699924 100.0 197660 100.0 897584 100.0

†Chi-Squared test



COUNTERFACTUAL PREDICTIVE ANALYTICS FOR ENHANCING STEM STUDENT SUCCESS 16

TABLE 3. OUTCOMES AND PREDICTED OUTCOMES QUESTION 4

Variable Matched n x St.Dev. Min Max

Panel A: NELS Sample

BS Realization rate No 766302 0.0353 0.1429 0.0000 0.7494

Yes 101665 0.1526 0.3235 0.0000 1.0000

p < 0.0001 all 867967 0.0491 0.1781 0.0000 1.0000

Lower than BS Realization rate No 672363 0.0772 0.2026 0.0000 0.7494

Yes 81383 0.1718 0.3455 0.0000 1.0000

p < 0.0001 all 753746 0.0874 0.2244 0.0000 1.0000

Weight No 768888 0.5013 0.1953 0.0654 0.7494

Yes 102306 0.8358 0.0754 0.7645 1.0000

p < 0.0001 all 871194 0.5406 0.2143 0.0654 1.0000

Panel B: ELS Sample

BS Realization rate No 740066 0.0337 0.1428 0.0000 0.7343

Yes 229908 0.1169 0.2909 0.0000 1.0000

p < 0.0001 all 969974 0.0535 0.1920 0.0000 1.0000

Lower than BS Realization rate No 740066 0.0821 0.2134 0.0000 0.7343

Yes 229908 0.1251 0.3014 0.0000 1.0000

p < 0.0001 all 969974 0.0923 0.2379 0.0000 1.0000

Weight No 740066 0.6100 0.1094 0.0700 0.7343

Yes 229908 0.8366 0.0807 0.7610 1.0000

p < 0.0001 all 969974 0.6637 0.1412 0.0700 1.0000
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TABLE 4. NELS NATIONALLY REPRESENTATIVE SAMPLE: DEMOGRAPHIC CHARACTERISTICS

Variable Levels n0 %0 n1 %1 nall %all

Panel A. Sociodemographic Attributes

woman 0 389422 50.6 47986 46.9 437408 50.2

1 379466 49.4 54320 53.1 433786 49.8

p < 0.0001 all 768888 100.0 102306 100.0 871194 100.0

white 0 233192 30.4 18768 18.3 251960 29.0

1 534522 69.6 83538 81.7 618060 71.0

p < 0.0001 all 767714 100.0 102306 100.0 870020 100.0

asian 0 740944 96.5 97861 95.7 838805 96.4

1 26770 3.5 4445 4.3 31215 3.6

p < 0.0001 all 767714 100.0 102306 100.0 870020 100.0

black 0 680948 88.7 98509 96.3 779457 89.6

1 86766 11.3 3797 3.7 90563 10.4

p < 0.0001 all 767714 100.0 102306 100.0 870020 100.0

hispanic 0 660545 86.0 93511 91.4 754056 86.7

1 107169 14.0 8795 8.6 115964 13.3

p < 0.0001 all 767714 100.0 102306 100.0 870020 100.0

Variable Matched n x St.Dev. Min Max

Panel B. Academic Indicators

units_in_math 0 620127 2.6694 1.1103 0.0000 6.0000

1 102306 3.4129 0.8021 0.0000 6.0000

p < 0.0001 all 722433 2.7747 1.1030 0.0000 6.0000

units_in_science 0 620127 2.4134 0.9872 0.0000 8.0000

1 102306 3.0090 0.7471 1.0000 5.0000

p < 0.0001 all 722433 2.4977 0.9791 0.0000 8.0000

gpa_all _courses† 0 486255 13.4171 27.2215 0.0000 103.0800

1 102306 3.4187 5.4261 1.8300 86.0000

p < 0.0001 all 588561 11.6791 25.1332 0.0000 103.0800

math_important 0 768888 0.8350 0.3712 0.0000 1.0000

1 102306 0.8933 0.3087 0.0000 1.0000

p < 0.0001 all 871194 0.8418 0.3649 0.0000 1.0000

absorbed_by_math 0 768888 0.5960 0.4907 0.0000 1.0000

1 102306 0.6391 0.4803 0.0000 1.0000

p < 0.0001 all 871194 0.6011 0.4897 0.0000 1.0000

hs_math_reqmnt 0 542393 2.4251 0.6079 0.0000 4.0000

1 93487 2.3127 0.5708 0.0000 4.0000

p < 0.0001 all 635880 2.4086 0.6039 0.0000 4.0000

hs_science_ reqmnt 0 542173 2.1180 0.5640 0.0000 4.0000

1 93358 2.1397 0.5614 0.0000 4.0000

p < 0.0001 all 635531 2.1212 0.5637 0.0000 4.0000

Note: n0 reflects no counterfactual match, n1 is a counterfactual match. 
†Cumulative GPA may exceed 100 percent in NELS because of quality of courses.
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TABLE 5. ELS NATIONALLY REPRESENTATIVE SAMPLE: PARTICIPANTS’ DEMOGRAPHIC CHARACTERISTICS

Variable Levels n0 %0 n1 %1 nall %all

Panel A. Sociodemographic Attributes

woman 0 361255 48.8 92545 40.2 453800 46.8

1 378811 51.2 137363 59.8 516174 53.2

p < 0.0001 all 740066 100.0 229908 100.0 969974 100.0

white 0 344008 46.5 66068 28.7 410076 42.3

1 396058 53.5 163840 71.3 559898 57.7

p < 0.0001 all 740066 100.0 229908 100.0 969974 100.0

asian 0 711033 96.1 223884 97.4 934917 96.4

1 29033 3.9 6024 2.6 35057 3.6

p < 0.0001 all 740066 100.0 229908 100.0 969974 100.0

black 0 626571 84.7 212493 92.4 839064 86.5

1 113495 15.3 17415 7.6 130910 13.5

p < 0.0001 all 740066 100.0 229908 100.0 969974 100.0

hispanic 0 576216 77.9 194055 84.4 770271 79.4

1 163850 22.1 35853 15.6 199703 20.6

p < 0.0001 all 740066 100.0 229908 100.0 969974 100.0

multi_race 0 708401 95.7 224918 97.8 933319 96.2

1 31665 4.3 4990 2.2 36655 3.8

p < 0.0001 all 740066 100.0 229908 100.0 969974 100.0

nat_am_alaska 0 734101 99.2 228122 99.2 962223 99.2

1 5965 0.8 1786 0.8 7751 0.8

p = 0.17 all 740066 100.0 229908 100.0 969974 100.0
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TABLE 5. ELS NATIONALLY REPRESENTATIVE SAMPLE: PARTICIPANTS’ DEMOGRAPHIC CHARACTERISTICS (CONTINUED)

Variable Matched n x St.Dev. Min Max

Panel B. Academic Indicators

units_in_math 0 740066 2.8404 1.1398 0.0000 7.0000

1 229908 3.5414 0.7463 0.0000 6.0000

p < 0.0001 all 969974 3.0065 1.1009 0.0000 7.0000

units_in_science 0 740066 2.5488 1.0509 0.0000 7.0000

1 229908 3.2001 0.7071 1.0000 6.0000

p < 0.0001 all 969974 2.7032 1.0188 0.0000 7.0000

gpa_all_courses 0 739696 2.3531 0.6458 0.0000 4.0000

1 229908 3.0672 0.4884 1.7900 4.0000

p < 0.0001 all 969604 2.5224 0.6834 0.0000 4.0000

math_important 0 740066 0.3428 0.4747 0.0000 1.0000

1 229908 0.3724 0.4835 0.0000 1.0000

p < 0.0001 all 969974 0.3498 0.4769 0.0000 1.0000

absorbed_by_math 0 740066 0.3309 0.4705 0.0000 1.0000

1 229908 0.3601 0.4800 0.0000 1.0000

p < 0.0001 all 969974 0.3378 0.4730 0.0000 1.0000

hs_math_reqmnt 0 486619 2.7553 0.6338 1.0000 4.0000

1 201805 2.8630 0.5619 1.0000 4.0000

p < 0.0001 all 688424 2.7869 0.6155 1.0000 4.0000

hs_science_reqmnt 0 489255 2.5517 0.6656 1.0000 4.0000

1 202134 2.7428 0.5954 1.0000 4.0000

p < 0.0001 all 691389 2.6076 0.6517 1.0000 4.0000

Note: n0 reflects no counterfactual match, n1 is a counterfactual match. 
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FIGURE 1. COUNTERFACTUAL IDENTIFICATION FRAMEWORK (BOLD FONT IN PANEL (D) INDICATES DEPARTURES FROM 
OBSERVABLES, RESULTING IN LOWER WEIGHTS)

Figure 1: Counterfactual Identification Framework (bold font in Panel (d) indicates departures from observables, resulting in lower
weights)
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FIGURE 2. PROBABILITIES OF COUNTERFACTUAL IDENTIFICATION NELS SAMPLE
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Figure 2: Probabilities of Counterfactual Identification NELS sample

45



COUNTERFACTUAL PREDICTIVE ANALYTICS FOR ENHANCING STEM STUDENT SUCCESS 21

FIGURE 3. PROBABILITIES OF COUNTERFACTUAL IDENTIFICATION ELS SAMPLE
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Figure 3: Probabilities of Counterfactual Identification ELS sample
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FIGURE 4. BEST PREDICTORS OF SUCCESS IN BS STEM GRADUATION NELS

absorbed_by_math

hispanic

woman

asian

hs_math_reqmnt

units_in_science

units_in_math

hs_science_reqmnt

gpa_all_courses

SES

0 10 20 30
Relative Influence (Full model)

Fe
at

ur
es

10 20 30
rel.inf

Top 10 Drivers Full Model

white

hispanic

asian

absorbed_by_math

woman

hs_math_reqmnt

units_in_science

hs_science_reqmnt

units_in_math

gpa_all_courses

0 20 40
Relative Influence (Excluding SES)

Fe
at

ur
es

10 20 30 40 50
rel.inf

Top 10 Drivers Excluding SES

black

asian

white

woman

hispanic

0 10 20 30 40
Relative Influence (Excluding SES)

Fe
at

ur
es

10 20 30 40
rel.inf

Top Demographics Excluding SES

Figure 4: Best Predictors of Success in BS STEM Graduation NELS
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FIGURE 5. BEST PREDICTORS OF SUCCESS IN BS STEM GRADUATION ELS
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Figure 5: Best Predictors of Success in BS STEM Graduation ELS
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